Ground-based measurements of atmospheric discharges detected on Swarm

Janusz Mlynarczyk<sup>1</sup>, Andrzej Kulak<sup>1</sup>, Karol Martynski<sup>1</sup>, Martin Popek<sup>4</sup>, Ewa Slominska<sup>2</sup>, Jan Blecki<sup>3</sup>, Jan Slominski<sup>3</sup>, Roman Wronowski<sup>3</sup>, Marek Strumik<sup>3</sup>

> <sup>1</sup>Department of Electronics, AGH University of Science and Technology, Krakow <sup>2</sup>OBSEE, Warszawa <sup>3</sup>Space Research Centre PAS, Warszawa <sup>4</sup>Institute of Atmospheric Physics CAS, Prague, Czechia

# Source of ground-based ELF data

The ELF data was provided by our system called World ELF Radiolocation Array (WERA), which consists of three ELF stations:

- **1.** The Hylaty station in Poland (installed in 2005, upgraded in 2013)
- 2. The Hugo station in Colorado, USA (installed in 2015)
- 3. The Patagonia station in Argentina (installed on March 26, 2016)
- -> Use of three stations on different continents allows us to measure strong atmospheric discharges occurring anywhere on Earth.



The stations are fully automated and perform continuous recording

# Ground-based measurements in the ELF range

At each station we measure two magnetic field components: north-south (NS) and east-west (EW)

Parameters of the WERA system - frequency range 0.03 - 300 Hz

- sampling frequency 887 Hz
- sensitivity 0.04 pT/sqrt(Hz) @10Hz
- battery powered



Installation of the Hugo ELF station in Colorado, USA, May 2015



Installation of the Patagonia ELF station in Patagonia, Argentina, March 2016

# Ground-based TLE data

• The main source of TLE data for Europe was an observation site located in Nydek, Czech Republic (49.6682N, 18.7692E, 475m a.m.s.l.)



#### System specifications

Four cameras Watec 910hx

Lens Computar 3,5-10/1,0, Computar 4,5-12/1,2 and Goyo 3-8/0,95 Zoom lens Tevidon 25/1,4, Sigma 35/1,4 and Super Takumar 50/1,4 Time information: Internet time (TimeMemo) and GPS time (TIM-10) Analog-to-digital converter:Dazzle DVC100(107) Camera position: manually controlled Observer: Martin Popek



A video frame showing a sprite that occurred on 16 August 2017 at 01:17:59 UT, The video was recorded in Nydek, Czechia, from the distance of 467 km



The distance from the ELF station was of 733 km.





and the charge moment change (bottom).

# Searching for coincidence between ground-based observations of atmospheric discharges and Swarm measurements



#### The amplitude of the ELF wave recorded on the ground is proportional to the charge moment of the discharge:

 $B_{peak} = C p$  [pT]

The coefficient C depends on the propagation channel, the distance from the source, and the receiver transfer function.

#### The amplitude spectral density measured on Swarm is proportional on the charge moment of the discharge:

 $B_A(p) = \beta \cdot p \quad [pT / \sqrt{Hz}]$ 

The efficiency of the atmosphere-ionosphere wave coupling is determined by Hall and Pedersen conductivities at the altitude of E layer. The conversion coefficient  $\beta$  is smaller during the day than at night.

- During the project Martin Popek recorded 2000 TLEs.
- We found coincidence with Swarm location in only a few cases, and in only one case Swarm was close enough to record a convincing signal.
- The recorded signature allowed us to use a sattelite-to-ground approach to find a large number of similar signatures and verify with the ground instruments that they coincide with lightning.
- The most interesting events were used in case studies.







#### Our first successful detection of lightning associated with a TLE on Swarm



A sequence of sprites recorded by Martin Popek



The north-south and east-west magnetic field components associated with the TLE, recorded by the Hylaty ELF station on 2 August 2017. CMC=4870 C km, iCMC=400 C km



Signature of the discharge on Swarm A & C

 $T_0 = 2017-08-02\ 00:01:42.395000, T_n = 2017-08-02\ 00:08:31.973000$ Sw. A, Eq. cr. LT, Asc: 13:27:15.260000, Desc:01:27:01.627000



#### Strong lightning discharges in Oklahoma detected on Swarm



Magnetic field component recorded by the Hylaty, Hugo, and Patagonia stations (first: iCMC=~700 C km, second: two discharges each with iCMC of about 350 C km)



## Strong lightning in South America detected on Swarm



## Strong lightning in North Africa detected on Swarm



Magnetic field component recorded by the Hylaty and Patagonia stations (iCMC~=1000 C km)





#### Strong lightning in Oceania detected on Swarm







A powerful lightning in Central America detected on Swarm

## Lightning discharges in Poland detected on Swarm



## Strong lightning in Poland detected on Swarm



#### Vector magnetometer vs. scalar magnetometer on Swarm



Signal associated with lightning recorded on Swarm by the scalar and vector magnetometer