Ionosphere in TIEGCM simulations: visualizations and comparison with Swarm measurements

M. Strumik, J. Slominski, E. Slominska, J. Blecki, R. Wronowski

Space Research Centre PAS (CBK PAN) Bartycka 18a, 00-716 Warsaw, Poland

ESA Swarm4Anom project Final review, December 10, 2020

Outline

Brief summary of work done and experience gained during the project on utilization of the TIEGCM numerical model in studies of ionospheric dynamics

Possible future work

TIEGCM model

Self-consistent numerical model

Includes dynamics, energetics and chemistry of the ionosphere

Uses realistic magnetic field from IGRF-12 model

Altitudes from ~97 to ~600 km

Solar UV from EUVAC model based on F10.7 proxy

Inner boundary: atmospheric tides, GSWM model

High-latitude energy input: cross-tail potential, hemispheric power (auroral precipitation)

Studies of WSA

Weddell Sea Anomaly: reversed diurnal cycle of density variations

Typically investigated by using maps for constant local time, e.g., of midnight

The index $I_{NDD} = (NE_t - NE_{t-12h})/(NE_t + NE_{t-12h})$ can characterize WSA

Tracking down the WSA origin

 $I_{_{NDD}}$ distribution shown in the ionospheric volume

Inner sphere and middaymidnight plane: I_{NDD} distribution (see the color scale)

"Hedgehog" structure around the sphere: points of TIEGCM grid where I_{NDD} > 0.1

Tracking down the WSA origin: roles of ExB drift and neutral wind

Satellite trajectory visualizations

NPDE/WSA in NmF2

Richards et al. 2017 COSMIC NmF2 data, January/December fron 2007 to 2010

30°E

90°E

60°E

120°E

150°E

180°

0.0

TIEGCM simulation for **SOLAR MIN**, benchmark case, December solstice

90°S

180°

150°W

120°W

90°W

60°W

30 %

NPDE/WSA in NmF2 (cont'd)

Richards et al. 2017 COSMIC NmF2 data, January/December from 2007 to 2010

TIEGCM simulation for **SOLAR MAX**, benchmark case, December solstice

Swarm vs. TIEGCM, electron density, solar min

Swarm A data: 2018-12-24 TIEGCM model: 2002-12-24 (benchmark case: December solstice, **SOLAR MIN**)

Swarm vs. TIEGCM, electron density, solar max

Swarm A data: 2018-12-24 TIEGCM model: 2002-12-24 (benchmark case: December solstice, **SOLAR MAX**)

Summary

The project investigated ionospheric dynamics "around" TIEGCM reference (benchmark) cases. Recommendations:

- long-run simulation starting from a benchmark case in 2002 and driven by real time series characterizing the solar UV and the state of the magnetosphere (or equivalently solar wind conditions)
- direct comparison of TIEGCM solution with satellite measurements using the long run as a proper basis
- tracking down physical processes responsible for generation of NPDE/WSA, e.g., testing if it is related to transport processes by ExB drift or neutral wind
- using machine learning techniques for understanding discrepancies between the modeling results and satellite measurements