Sensitivity of the index to various solar and magnetic conditions

PM3
June 25, 2019

Climatology of $I_{N D D}$ - Challenges

- For specific LTs it serves as good indicator of the reversed diurnal cycle.
- Pending question: Can we use $I_{N D D}$ as a proxy for ionospheric climatology?

How to make the index a useful/versatile parameter for ionospheric observations?

Ionospheric trends - climatological indicator

In literature:

- "long-term trends" - "over several decades"
- trend - according to definition: as a (nearly) linear change,
- for ionospheric purposes: Typical trends in hmF2 - increase/decreases of a few $\mathrm{km} /$ decade (or for critical freq. f0F2 MHz/decade)
- data $X_{\text {obs }}$ may be fitted to a theoretical data set $X_{t h}=A+B \cdot S+C \cdot K p, \mathrm{~S}$ is a solar activity proxy (e.g. sunspot number or F10.7 solar flux), Kp index (or another geomagnetic activity indicator), and A, B, and C fitted coefficient.
- Absolute or relative difference $\Delta X\left(X_{o b s}-X_{t h}\right)$ is used to obtain a linear trend according to: $\Delta X=a+b \cdot$ year,
- Through sine and cosine func. annual and semiannual influences can be filter out

Ionospheric trends - climatological indicator

Before we can built trends, we need to know what dominant cycles can be picked in available series of $I_{N D D}$?

Ionospheric trends - climatological indicator

Before we can built trends, we need to know what dominant cycles can be picked in available series of $I_{N D D}$?

Ionospheric trends - climatological indicator

Before we can built trends, we need to know what dominant cycles can be picked in available series of $I_{N D D}$?

Cycles in $I_{N D D}$ and $\delta I_{N D D}$

- if $I_{N D D}$ had yearly variation, $\mathrm{f}=1$ should a fundamental freq. - it is not.

Cycles in $I_{\text {NDD }}$

- Bravo:n=1.45-251 days (LT), $\mathrm{n}=2.57$ (142 days), 3.2 (114 days), 4.7, 6.3, 7.5
- Alpha/Charlie - slightly differ in amplitudes, but corresponding n (A:) 0.9 (405 days), $\mathbf{n}=1.48$ - 246.6 days, $2.54,2.87,3.29,2.68,4.56,6.5,8.1$,

Trends from global $I_{N D D}$

- Bravo: $\left.\delta I_{N D D}=12.9,13.5,18.8,22.3,25,30.1,52,54\right)$
- Alpha/Charlie: $\delta I_{N D D}, \mathrm{n}=8.4,12.2,16,18.4,27.2,51.7$
- Fluctuations of the index should exhibit correspondence with solar/magnetic activity

Trends from global $I_{N D D}$

- Bravo: $\left.\delta l_{N D D}=12.9,13.5,18.8,22.3,25,30.1,52,54\right)$
- Alpha/Charlie: $\delta I_{N D D}, \mathrm{n}=8.4,12.2,16,18.4,27.2,51.7$
- Fluctuations of the index should exhibit correspondence with solar/magnetic activity

Trends from global $I_{N D D}$

- Bravo: $\left.\delta I_{N D D}=12.9,13.5,18.8,22.3,25,30.1,52,54\right)$
- Alpha/Charlie: $\delta I_{N D D}, \mathrm{n}=8.4,12.2,16,18.4,27.2,51.7$
- Fluctuations of the index should exhibit correspondence with solar/magnetic activity

St. Patrick storm of 2015

Fluctuations of the index - Longitudinal transect

Fluctuations of the index during magnetic storm $\delta I_{N D D}-$ Swarm A

Fluctuations of the index during magnetic storm $\delta I_{N D D}$ - Swarm B

Despite different local times between Swarm A and B, fluctuations in $\delta I_{N D D}$ as a response to magnetic storm reveal similar behaviour

Summary

- The concept of $I_{N D D}$ assumes that we eliminate quickly varying, small scale fluctuations of electron density.
- $I_{N D D}$ suitable for analysis of large scale ionospheric features, allows for cross-comparison with various missions, models
- But, fluctuations of the index $\left(\delta I_{N D D}\right)$ are suitable for space weather applications
- $\delta I_{N D D}$ exhibits analogy with the ROTI index, but has much lower time resolution daily representation of ionospheric state.

