Sensitivity of the index to various solar and magnetic conditions

PM3

June 25, 2019

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Climatology of I_{NDD} - Challenges

- For specific LTs it serves as good indicator of the reversed diurnal cycle.
- Pending question: Can we use I_{NDD} as a proxy for ionospheric climatology?

How to make the index a useful/versatile parameter for ionospheric observations?

In literature:

- "long-term trends" "over several decades"
- trend according to definition: as a (nearly) linear change,
- for ionospheric purposes: Typical trends in hmF2 increase/decreases of a few km/decade (or for critical freq. f0F2 MHz/decade)
- data X_{obs} may be fitted to a theoretical data set $X_{th} = A + B \cdot S + C \cdot Kp$, S is a solar activity proxy (e.g. sunspot number or F10.7 solar flux), Kp index (or another geomagnetic activity indicator), and A, B, and C fitted coefficient.
- Absolute or relative difference $\Delta X(X_{obs} X_{th})$ is used to obtain a linear trend according to: $\Delta X = a + b \cdot year$,
- Through sine and cosine func. annual and semiannual influences can be filter out

Before we can built trends, we need to know what dominant cycles can be picked in available series of *I*_{NDD}?

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣 - のへで

Before we can built trends, we need to know what dominant cycles can be picked in available series of *I*_{NDD}?

▲ロト ▲御 ト ▲臣 ト ▲臣 ト 三臣 - のへで

Before we can built trends, we need to know what dominant cycles can be picked in available series of *I*_{NDD}?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Cycles in I_{NDD} and δI_{NDD}

• if I_{NDD} had yearly variation, f=1 should a fundamental freq. - it is not.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一 臣 - のへで

Cycles in I_{NDD}

- Bravo:n=1.45 251 days (LT), n=2.57 (142 days), 3.2 (114 days), 4.7, 6.3, 7.5
- Alpha/Charlie slightly differ in amplitudes, but corresponding n (A:) 0.9 (405 days), n=1.48 246.6 days, 2.54, 2.87, 3.29, 2.68, 4.56, 6.5,8.1,

Trends from global INDD

- Bravo: $\delta I_{NDD} = 12.9, 13.5, 18.8, 22.3, 25, 30.1, 52, 54$)
- Alpha/Charlie: δ*I_{NDD}*, n=8.4, 12.2, 16, 18.4, 27.2, 51.7
- Fluctuations of the index should exhibit correspondence with solar/magnetic activity

Trends from global INDD

- Bravo: $\delta I_{NDD} = 12.9, 13.5, 18.8, 22.3, 25, 30.1, 52, 54$)
- Alpha/Charlie: δ*I_{NDD}*, n=8.4, 12.2, 16, 18.4, 27.2, 51.7
- Fluctuations of the index should exhibit correspondence with solar/magnetic activity

Trends from global INDD

- Bravo: $\delta I_{NDD} = 12.9, 13.5, 18.8, 22.3, 25, 30.1, 52, 54$)
- Alpha/Charlie: δ*I_{NDD}*, n=8.4, 12.2, 16, 18.4, 27.2, 51.7
- Fluctuations of the index should exhibit correspondence with solar/magnetic activity

St. Patrick storm of 2015

		Ap 1	00- 03h	03- 06h	06- 09h	09- 12h	12- 15h	15- 18h	18- 21h	21- 00h	Kp max
1	2015/03/17	108	2	5-	6-	5+	8-	8-	7+	8-	8-

Fluctuations of the index - Longitudinal transect

Fluctuations of the index during magnetic storm δI_{NDD} - Swarm A

		Ap O	00- 03h	03- 06h	06- 09h	09- 12h	12- 15h	15- 18h	18- 21h	21- 00h	Kp max
1	2017/09/08	106	8	5-	4+	5	8+	7+	6+	6-	8+
2	2017/09/28	51	5+	6+	7-	5-	4-	4	4-	5-	7-

Fluctuations of the index during magnetic storm δI_{NDD} - Swarm B

		Ap 0	00- 03h	03- 06h	06- 09h	09- 12h	12- 15h	15- 18h	18- 21h	21- 00h	Kp max
1	2017/09/08	106	8	5-	4+	5	8+	7+	6+	5-	8+
2	2017/09/28	51	5+	6+	7-	5-	4-	4	4-	6-	7-

Despite different local times between Swarm A and B, fluctuations in δI_{NDD} as a response to magnetic storm reveal similar behaviour

Summary

- The concept of I_{NDD} assumes that we eliminate quickly varying, small scale fluctuations of electron density.
- I_{NDD} suitable for analysis of large scale ionospheric features, allows for cross-comparison with various missions, models
- But, fluctuations of the index (δI_{NDD}) are suitable for space weather applications
- δI_{NDD} exhibits analogy with the ROTI index, but has much lower time resolution daily representation of ionospheric state.