Analysis of spatio-temporal correlations between GOES-16/17 GLM observations of lightnings and magnetic field fluctuations measured by Swarm

Marek Strumik¹, Jan Słomiński¹, Ewa Słomińska², Jan Błęcki¹, Roman Wronowski¹, Janusz Młynarczyk³, Karol Martyński³, Andrzej Kułak³

¹Space Reseach Centre, Polish Academy of Sciences, Warsaw, Poland ²OBSEE, Warsaw, Poland ³AGH University of Science and Technology, Kraków, Poland

> ESA Swarm4Anom project Progress meeting, 23 April 2020

Outline

- Study based on the list of cases provided by Ewa & Jan
- Analysis of cases covered by the field of view of GOES-16/17 GLM instrument: North and South America, adjacent oceanic regions
- Focus on spatio-temporal correlations between GLM observations and Swarm magnetic-field measurements
- Theoretical context: Mazur et al. 2018 model and simple considerations based on the Biot-Savart law

GOES-16/17 (R series) GLM

Goodman et al. 2013

field of view of GOES-16/17 GLM instrument: North and South America, adjacent oceanic regions Geostationary satellites

GLM is mapping the total lightning activity during day (more difficult) and night

pixel FOV (nadir): 8 km pixel FOV (corner): 14 km

wavelength: 777.4 nm

frame rate: 2 ms

GLM data and algorithms

Illustration of the GLM algorithm with heritage from NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD)

- Event (hot pixel exceeding a threshold)
- Group (set of adjacent events at the same time)
- Flash (set of groups sequentially separated in time by 330 ms or less and in space by no more than 16.5 km – two pixels)

GLM data

- Events show hot pixels (attributes: time, location, energy)
- Groups (attributes: time, location of the center, energy, area, quality flag)
- Flashes (attributes: time interval, location of the center, energy, area, quality flag)

All the three "objects" include interesting information for studies

Modeling ULF/ELF range

Discharge/current at some height above the ground

Propagation of the perturbation in the atmosphere with the light speed

Conversion to a plasma wave in the E-layer

Propagation of the plasma wave with a smaller speed in the ionosphere

Remark: both current and magnetic field are vertical (radial) in the model by Mazur et al. 2018

Modeling ULF/ELF range

Example of a waveform seen by a satellite: amplitude ~4 nT, time lag ~0.45 s, echo lag ~1 s

Amplitude modulation dependent on ρ

Magnetic field lines around a discharge

A simpler model gives also some insight: magnetic field from a finite conductor based on the Biot-Savart law (plasma wave not included)

ULF/ELF-range frequency problem can be solved if we have +CG with continuing current

C (center) component should be small for vertical/radial discharges (possibility of testing) Case study

GLM observations and Swarm magnetic field fluctuations, time evolution

2018-03-03 22:14:29

54.3° W, 28.5° N

60°W

50°W

20°N

2018-03-03 22:14:26.00 ±0.25 s

60°W

50°W

20°N

60°W

50°W

UTC time

Swarm C closer to the flash than Swarm A, which is seen in amplitudes 12 similar cases were found (including the first one) in Ewa & Jan list, where similar scenario was observed 1. 2018-03-03 22:14:29, 54.3° W, 28.5° N (shown in previous slides) 2. 2018-09-23 03:36:15, 53.1° W, 33.2° S 3. 2018-10-06 06:10:05, 106.5° W, 19.5° N 4. 2018-11-01 03:03:24. 98.2° W. 20.5° N 5. 2019-05-10 09:38:15, 95.1° W, 30.6° N 6. 2019-06-05 02:57:35, 30.9° W, 31.0° S 7. 2019-06-18 05:26:11, 80.1° W, 25.2° N 8. 2019-06-20 05:41:36, 93.1° W, 33.5° N 9. 2019-06-20 05:42:05, 89.2° W, 34.2° N 10. 2019-10-31 01:25:21, 30.1° W, 35.5° N 11. 2019-11-28 02:57:28, 89.5° W, 18.4° N 12. 2019-12-14 01:29:52, 85.0° W, 32.3° N Next slides show these cases, two frames for each case If a flash is seen in more than two consequtive frames (0.5s each), it is presumably caused by continuing current

10°N

110°W

20°N

10°N

UTC time

10°N

100°W

90°W

-CG?

100°W

90°W

UTC time

2019-06-05 02:57:34.00 ±0.25 s

2019-06-05 02:57:34.50 ±0.25 s

2019-06-18 05:26:10.50 ±0.25 s

7b

2019-06-18 05:26:11.00 ±0.25 s

2019-06-20 05:41:35.00 ±0.25 s

2019-06-20 05:41:35.50 ±0.25 s

Flash very close to Swarm A, which is seen in the amplitudes

20°W

30°W

Leading dB_N is negative, we are on the other side

30°W

20°W

30°N

11a

2019-11-28 02:57:27.00 ±0.25 s

02:57:25 02:57:26 02:57:27 02:57:28 02:57:29 02:57:30

UTC time

-0.2

02:57:24

2019-11-28 02:57:27.50 ±0.25 s

Leading dB_N is negative, we are on the other side

2019-12-14 01:29:51.50 ±0.25 s

2019-12-14 01:29:52.00 ±0.25 s

Case 1, Swarm A

Time-distance-energy plot

- based on groups
- allows to determine time lag between a flash and a Swarm fluctuation
- we can determine time interval for the flash
- we can estimate size of the flash
- shows the angular distance between the flash and Swarm

Case 2 Swarm A

Case 6 Swarm A

Conclusions

- Correlations between GLM and Swarm reveal a picture that is consistent with Mazur et al. 2018 model, but amplitudes are significantly smaller (by factor ~0.1) and observed waveforms are more complicated
- If Δt>0.5s is set for flash selection process, then the study naturally focuses on continuing-current flashes, possibly TLE's
- After selecting flashes with Δ t>0.5s, it turned out a posteriori that the flashes are spatially extended which is physically consistent
- All analyzed cases were observed during local nighttime
- Most cases are +CG, at least one is -CG, as inferred from the leading part of magnetic field fluctuations
- Time-distance-energy plots were proposed as a useful tool in investigations of spatio-temporal correlations between GLM observations and Swarm measurements
- Cases from 2020 still remain in the fridge to be analyzed soon ...